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Abstract

本記事は物理学アドベントカレンダー 2025の 5日目の記事である。一般相対論的効果
による近日点移動を特異摂動論で議論する。§1では解くべき方程式を導出する。§2では、
ポアンカレの摂動論でそれを解く。§3では内山の方法を紹介し、付録Aではその方法を改
良する。
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1 運動方程式の導出
質点が重力場とのみ作用しているとき、運動方程式は作用

S =
m

2

∫
dτ gµν(x(τ))

dxµ

dτ

dxν

dτ
(1.1)

より導出できる [1]。ここで、gµν は計量テンソルであり、τ は固有時である。球対称で静的な
時空

ds2 = −
(
1− a

r

)
c2dt2 +

dr2

1− a
r

+ r2[sin2 θdφ2 + dθ2] (1.2)

を考える。ここで、

a :=
2GM

c2
(1.3)
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はシュワルツシルト半径であり、Gは万有引力定数で、Mは中心にある星の質量である。以下、
c = 1とする。この時空では、作用 Sは、

S =
m

2

∫
dτ L, (1.4)

L := −
(
1− a

r

)
ṫ2 +

ṙ2

1− a
r

+ r2[sin2 θφ̇2 + θ̇2] (1.5)

である。ここで Ẋ := dX/dτ である。作用は tと φを陽に含まないので、
∂L

∂ṫ
= −2

(
1− a

r

)
ṫ, (1.6)

∂L

∂φ̇
= 2r2 sin2 θφ̇ (1.7)

は保存する。θについての変分から、
d

dτ
(r2θ̇)− r2φ̇2 sin θ cos θ = 0 (1.8)

を得る。τ = 0で θ = π/2, θ̇ = 0とすると、

θ = π/2 (1.9)

となる [1]。このとき、(1.6), (1.7)の定数を、

ε :=
(
1− a

r

)
ṫ, (1.10)

h := r2φ̇ (1.11)

と置く。
rについてのオイラー・ラグランジュ方程式を導く。まず、

∂L

∂ṙ
= 2

ṙ

1− a
r

, (1.12)

∂L

∂r
= − a

r2
ṫ2 − a

r2
ṙ2(

1− a
r

)2 + 2r[sin2 θφ̇2 + θ̇2]

= − a

r2
ṫ2 − a

r2
ṙ2(

1− a
r

)2 + 2rφ̇2 (1.13)

である。更に、
d

dτ

∂L

∂ṙ
= 2

r̈

1− a
r

− 2
a

r2
ṙ2(

1− a
r

)2 (1.14)

なので、オイラー・ラグランジュ方程式は、

2
r̈

1− a
r

− a

r2
ṙ2(

1− a
r

)2 +
a

r2
ṫ2 − 2rφ̇2 = 0 (1.15)
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である。(1.10), (1.11)より、

ṫ =
ε

1− a
r

, φ̇ =
h

r2
(1.16)

なので、
r̈

1− a
r

+
a

2r2
ε2 − ṙ2(
1− a

r

)2 − h2

r3
= 0 (1.17)

を得る。ところで、τ は固有時なので、

−
(
1− a

r

)
ṫ2 +

ṙ2

1− a
r

+ r2[sin2 θφ̇2 + θ̇2] = −1 (1.18)

である。今の場合は、

−
(
1− a

r

)
ṫ2 +

ṙ2

1− a
r

+ r2φ̇2 = −1,

−ε2 − ṙ2

1− a
r

+
h2

r2
= −1 (1.19)

となる。(1.17)は、

r̈ +
a

2r2
ε2 − ṙ2

1− a
r

−
(
1− a

r

)h2

r3
= 0 (1.20)

なので、(1.19)より、

r̈ +
a

2r2

(
1 +

h2

r2

)
−
(
1− a

r

)h2

r3
= 0,

r̈ +
a

2r2

(
1 + 3

h2

r2

)
− h2

r3
= 0 (1.21)

を得る。
いま、

u :=
1

r
(1.22)

とすると、

u̇ = −u2ṙ, (1.23)

ü = −u2r̈ − 2uu̇ṙ

= −u2r̈ + 2u3ṙ2 (1.24)

である。ここで、(1.21)より、

r̈ = −a

2
u2
(
1 + 3h2u2

)
+ h2u3 (1.25)
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なので、
ü = u3

[a
2
u
(
1 + 3h2u2

)
− h2u2 + 2ṙ2

]
(1.26)

を得る。一方、
u̇ =

du

dφ
φ̇

= h
du

dφ
u2, (1.27)

ü = h
[d2u
dφ2

φ̇u2 + 2
du

dφ
uu̇

]
= h2

[d2u
dφ2

u4 + 2
(du
dφ

)2

u3
]

(1.28)

なので、

h2u
d2u

dφ2
+ 2h2

(du
dφ

)2

=
a

2
u
(
1 + 3h2u2

)
− h2u2 + 2ṙ2 (1.29)

を得る。ここで、
du

dφ
=

u̇

φ̇

=
−u2ṙ

hu2

= − ṙ

h
(1.30)

なので、

h2u
d2u

dφ2
=

a

2
u
(
1 + 3h2u2

)
− h2u2,

d2u

dφ2
=

a

2h2

(
1 + 3h2u2

)
− u,

d2u

dφ2
+ u =

a

2h2
+

3a

2
u2 (1.31)

を得る。いま、
A :=

a

2h2
=:

1

l
, ε :=

3a

2
(1.32)

とすると、
d2u

dφ2
+ u = A+ εu2 (1.33)

である。更に、
u = A+ y (1.34)

とすると、
d2y

dφ2
+ y = ε(A+ y)2 (1.35)

を得る。
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2 ポアンカレの摂動論
2.1 一般論
(1.35)は、

d2x

dt2
+ x = µf(x, ẋ) (0 < µ ≪ 1) (2.1)

の形をしている。ここで、ẋ = dx/dtである。この方程式に周期解があり、その周期が 2π/ω(µ)

とする。これを探そう [2]。仮定

ω(µ) = 1 + µω1 + µ2ω2 + · · · , (2.2)

x = x0 + µx1 + µ2x2 + · · · (2.3)

を置く。また、

τ := ω(µ)t (2.4)

とし、

X ′ :=
dX

dτ
, X ′′ :=

d2X

dτ 2
(2.5)

などとする。このとき、(2.1)は、

ω2x′′ + x = µf(x, ωx′) (2.6)

となる。(2.2), (2.3)を代入して、

x′′
0 + x0 = 0, (2.7)

x′′
1 + x1 = −2ω1x

′′ + f(x0, x
′
0) (2.8)

を得る。最初の式の解を、

x0 = B cos τ (2.9)

とする。このとき、

x′′
1 + x1 = −2ω1B cos τ + f(B cos τ,−B sin τ) (2.10)

となる。いま、

F (B, τ) := f(B cos τ,−B sin τ) = a0 +
∞∑
n=1

[an(B) cosnτ + bn(B) sinnτ ] (2.11)

とする。(2.10)の右辺に sin τ , cos τ が現れないならば、永年項が生じない。よって、

2ω1B + a1(B) = 0, (2.12)

b1(B) = 0 (2.13)

により ω1, Bを決定する [2]。
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2.2 近日点移動の場合
(1.35)の場合は、

µ = εA, f =
1

A
(A+ y)2 (2.14)

なので、

F (B, τ) =
1

A
(A+B cos τ)2

=
1

A
(A2 + 2AB cos τ +B21 + cos 2τ

2
) (2.15)

であり、

a1(B) = 2B, (2.16)

b1(B) = 0 (2.17)

となる。よって、

ω1 = −1, (2.18)

ω = 1− εA+O(ε2) (2.19)

を得る。Bは任意である。ここでは、

B = −e

l
(0 < e < 1) (2.20)

と置く1) 。このとき、(2.10)は、

y′′1 + y1 = A2 +
1

2
B2 +

1

2
B2 cos 2τ (2.21)

となる。ただし、

y = B cos τ + εy1 + ε2y2 · · · (2.22)

と置いた。よって、

y1 = A2 +
1

2
B2 − 1

6
B2 cos 2τ + C sin τ +D cos τ (2.23)

である。以上より、

u = A+B cos τ + ε
[
A2 +

1

2
B2 − 1

6
B2 cos 2τ + C sin τ +D cos τ

]
+O((εA)2), (2.24)

τ = [1− εA+O((εA)2)]φ (2.25)

を得る。これは厳密解 [1]や EMANの物理学 [3]と整合する。
1)B = e/lとしても良い。単に時間 (というか φ)の原点の違いである。
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3 あとがき
記事 [1]および本記事を書くきっかけになったのは、ブログ [4]を見付けたことであった。そ
こでは内山『一般相対性理論』[5]における近日点移動の議論が紹介され、それへの疑問が書か
れている。内山『一般相対性理論』では、微分方程式(du

dφ

)2

+ u2 − a

h2
u− ε2 − 1

h2
= au3 (3.1)

を考える。右辺が 0の場合の解は、

u =
1 + e0 cosφ

l0
(3.2)

の形であるから、(3.1)の解を、

u =
1 + e cos(ηφ)

l
(3.3)

と予想し、これを (3.1)に代入して、

e ≈ e0, l ≈ l0, η ≈ 1− 3a

2l0
(3.4)

を得る [5]。ブログ [4]は、むしろ、

u =
1 + e cos(ηφ)

l
+

a

l
u(1) +O((a/l)2) (3.5)

と置くべきではないか？と議論している。そして、そのような議論がEMANの物理学 [3]にあ
ることが紹介されている。
記事 [1]および本記事はEMANの物理学 [3]を理解するために書かれた。まず、記事 [1]では

(3.1)の厳密解を求め、それを a/l0について展開して、EMANの物理学の結果が再現されるこ
とを示した。その後、文献 [2]を見付け、EMANの物理学の議論がポアンカレの摂動論に対応
することを理解し、本記事を書いた。これによって、EMANの物理学を完全に理解した。
付録Aでは、内山の方法を改良し、a/l0のオーダーまで正しい結果を導く。
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A 内山の方法の改良
2E := ε2 − 1と置くと、(3.1)は、(du

dφ

)2

+ u2 − a

h2
u− 2E

h2
= au3 (A.1)

となる。この解を。
u =

1− e cos ηφ

l
+

a

l0
[Q cos 2ηφ+R sin ηφ] (A.2)

と仮定し、l, e, η, Q, Rを求めることを考える。ただし、
l = l0 +

a

l0
l1 +O((a/l0)

2), (A.3)

e = e0 +
a

l0
e1 +O((a/l0)

2), (A.4)

η = 1 +
a

l0
η1 +O((a/l0)

2) (A.5)

を仮定する。なお、水星に対して、
a

l0
= 5.325× 10−8 (A.6)

である [1]。
まず、

du

dφ
= η

(e
l
sin ηφ+

a

l0
[−2Q sin 2ηφ+R cos ηφ]

)
(A.7)

であり、τ := ηφとして、(du
dφ

)2

= η2
(e2
l2

sin2 τ + 2
ae0
l20

[−2Q sin τ sin 2τ +R sin τ cos τ ]
)
+O((a/l0)

2)

= η2
(e2
l2
1− cos 2τ

2
+

ae0
l20

[2Q(cos 3τ − cos τ) + R sin 2τ ]
)
+O((a/l0)

2) (A.8)

となる。また、

u2 =
1− 2e cos τ + e2 cos2 τ

l2
+ 2

a

l20
(Q cos 2τ +R sin τ − e0Q cos τ cos 2τ − e0R sin τ cos τ)

+O((a/l0)
2)

=
1− 2e cos τ + e2(1 + cos 2τ)/2

l2
+

a

l20
(2Q cos 2τ + 2R sin τ − e0Q[cos 3τ + cos τ ]

− e0R sin 2τ) +O((a/l0)
2) (A.9)

である。au3は、
au3 = a

(1− e0 cos τ

l0

)3

+O((a/l0)
2)

= a
1− 3e0 cos τ + 3e20 cos

2 τ − e30 cos
3 τ

l30
+O((a/l0)

2)

=
a

l30

[
1− 3e0 cos τ +

3e20
2

(1 + cos 2τ)− e30

(3
4
cos τ +

1

4
cos 3τ

)]
+O((a/l0)

2) (A.10)
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である。これらを (A.1)に代入して、まず定数項の比較から、

η2
e2

2l2
+

2 + e2

2l2
− a

h2

1

l
− 2E

h2
=

a

l30

[
1 +

3e20
2

]
(A.11)

を得る。cos τ の係数の比較から、

−2
ae0
l20

Q− 2e

l2
− a

l20
e0Q+

a

h2

e

l
=

a

l30

(
− 3e0 −

3

4
e30

)
(A.12)

を得る。sin τ の係数の比較から、

R = 0 (A.13)

となる。cos 2τ の係数の比較から、

−η2
e2

2l2
+

e2

2l2
+ 2

a

l20
Q− a

h2

a

l0
Q =

a

l30

3e20
2

(A.14)

を得る。cos 3τ の係数の比較から、

2
ae0
l20

Q− a

l20
e0Q = −ae30

4l30
(A.15)

を得る。(A.15)より、

Q = − e20
4l0

(A.16)

である。
いま、

1

l
=

1

l0
+ α

a

l20
+O((a/l0)

2), (A.17)

e

l
=

e0
l0

+ β
a

l20
+O((a/l0)

2) (A.18)

と置く。また、
a

h2
=

2

l0
, (A.19)

2E

h2
=

1

l20
(e20 − 1) (A.20)

である。これより、(A.11)は、

(1 + 2η1
a

l0
)
1

2
(
e20
l20

+ 2β
ae0
l30

) +
1

l20
+ 2α

a

l30
+

1

2
(
e20
l20

+ 2β
ae0
l30

)

− 2

l20
− 2α

a

l30
+

1

l20
(1− e20) =

a

l30

[
1 +

3e20
2

]
(A.21)
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となる。整理すると、

e20η1 + 2e0β = 1 +
3

2
e20 (A.22)

である。(A.12)は、

−3
ae0
l20

(
− e20

4l0

)
− 2

(e0
l0

+ β
a

l20

)( 1

l0
+ α

a

l20

)
+

2

l0

(e0
l0

+ β
a

l20

)
=

a

l30

(
− 3e0 −

3

4
e30

)
(A.23)

となる。整理すると、

−2e0α = −3e0 −
3e30
2

,

α =
3

2
+

3e20
4

(A.24)

を得る。(A.14)は、

1

2

(
− 1− 2η1

a

l0
+ 1

)(e20
l20

+ β
ae0
l30

)
=

a

l30

3e20
2

(A.25)

となる。整理すると、

−e20η1 =
3

2
e20,

η1 = −3

2
(A.26)

を得る。(A.22)より、

2e0β = 1 +
3

2
e20 +

3

2
e20 = 1 + 3e20,

β =
1 + 3e20
2e0

(A.27)

となる。
以上より、

u =
1− e0 cos τ

l0
+

a

l20

[3
2
+

3e30
4

− 1 + 3e20
2e0

cos τ − e20
4
cos 2τ

]
+O((a/l0)

2), (A.28)

τ =
[
1− 3a

2l0
+O((a/l0)

2)
]
φ (A.29)

を得る。これは厳密解の展開 [1]と一致する。
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