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Abstract

本記事は物理学アドベントカレンダー 2025の 4日目の記事である。一般相対論的効果
による近日点移動を厳密解を用いて調べる。§1では運動方程式を導出する。§2では、§1で
得られた微分方程式を楕円関数を用いて解く。§3では得られた厳密解を解析し、近日点移
動の大きさを求める。付録Aでは、厳密解を別の方法で導出する。付録 Bでは、厳密解に
現れる 3次方程式の解をニュートン法を用いて近似する。付録 Cでは、楕円関数をフーリ
エ展開し、EMANの物理学で与えられた表式との関係を調べる。
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1 運動方程式の導出
質点が重力場とのみ作用しているとき、運動方程式は作用

S =
m

2

∫
dλ

[
e(λ)gµν(x(λ))

dxµ

dλ

dxν

dλ
− c2

e(λ)

]
(1.1)

より導出できる。ここで、gµνは計量テンソルであり、λはパラメーター、e(λ)は補助場で、

λ → λ′, e → e′ =
dλ′

dλ
e (1.2)
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の変換で作用は不変である。xµについての変分より、

δS =
m

2

∫
dλ

[
e(λ)δxσ∂σgµν(x(λ))

dxµ

dλ

dxν

dλ
+ 2e(λ)gµν(x(λ))

dδxµ

dλ

dxν

dλ

]
=

m

2

∫
dλ δxσ

[
e(λ)∂σgµν(x(λ))

dxµ

dλ

dxν

dλ
− 2

d

dλ

{
e(λ)gσν(x(λ))

dxν

dλ

}]
(1.3)

なので、

e(λ)∂σgµν(x(λ))
dxµ

dλ

dxν

dλ
− 2

d

dλ

{
e(λ)gσν(x(λ))

dxν

dλ

}
= 0 (1.4)

である。eについての変分より、

gµν(x(λ))
dxµ

dλ

dxν

dλ
+

c2

e2
= 0 (1.5)

である。特に、e = 1となるときの λを τ とすると、

gµν(x(τ))
dxµ

dτ

dxν

dτ
= −c2 (1.6)

となる。このとき、(1.4)は、

∂σgµν(x(τ))
dxµ

dτ

dxν

dτ
− 2

d

dτ

{
gσν(x(τ))

dxν

dτ

}
= 0 (1.7)

となる。これは、

−1

2
∂σgµν(x(τ))

dxµ

dτ

dxν

dτ
+ ∂µgσν(x(τ))

dxµ

dτ

dxν

dτ
+ gσν(x(τ))

d2xν

dτ 2
= 0 (1.8)

であり、整理すると、

gσν(x(τ))
d2xν

dτ 2
+

1

2
[∂µgσν + ∂νgσµ − ∂σgµν ]

dxµ

dτ

dxν

dτ
= 0 (1.9)

となり、測地線の方程式となる。この方程式は、(1.1)で最初から e = 1とし、定数項を落とした

S ′ =
m

2

∫
dτ gµν(x(τ))

dxµ

dτ

dxν

dτ
(1.10)

からも得られる。
以下、球対称で静的な時空

ds2 = −
(
1− a

r

)
c2dt2 +

dr2

1− a
r

+ r2[sin2 θdφ2 + dθ2] (1.11)

を考える。ここで、

a :=
2GM

c2
(1.12)

はシュワルツシルト半径であり、Gは万有引力定数で、Mは中心にある星の質量である。以下、
c = 1とする。
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この時空では、作用 S ′は、

S ′ =
m

2

∫
dτ L, (1.13)

L := −
(
1− a

r

)
ṫ2 +

ṙ2

1− a
r

+ r2[sin2 θφ̇2 + θ̇2] (1.14)

である。ここで Ẋ := dX/dτ である。作用は tと φを陽に含まないので、
∂L

∂ṫ
= −2

(
1− a

r

)
ṫ, (1.15)

∂L

∂φ̇
= 2r2 sin2 θφ̇ (1.16)

は保存する。θについての変分から、
d

dτ
(r2θ̇)− r2φ̇2 sin θ cos θ = 0 (1.17)

を得る。
今、

A := r2, (1.18)

B :=
1

2
r2φ̇2, (1.19)

f(θ) := sin 2θ (1.20)

とすると、
d

dτ
(Aθ̇)− Bf(θ) = 0 (1.21)

である。この式を τ で n階微分して、
n+1∑
r=0

n+1CrA
(r)θ(n+1−r) −

n∑
r=0

nCrB
(n−r)d

rf

dτ r
= 0 (1.22)

を得る。ここで、Faà di Brunoの公式 [1]より、

drf

dτ r
=

r∑
i=1

∑
(q)

r!f (i)(θ)
r−i+1∏
k=1

1

qk!

[θ(k)
k!

]qk
(1.23)

である。和∑
(q)は、

r−i+1∑
l=1

ql = i, (1.24)

r−i+1∑
l=1

lql = r (1.25)
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を満たすような全ての非負整数の組について取る。A > 0であるから、θ(n+1)は {θ(i)}ni=0で表
される。特に、τ = 0で θ = π/2, θ̇ = 0とすると、

θ(n)
∣∣∣
τ=0

= 0 (n ≥ 2) (1.26)

を得る。これより、このとき θ = π/2となる。このとき、(1.15), (1.16)の定数を、

ε :=
(
1− a

r

)
ṫ, (1.27)

h := r2φ̇ (1.28)

と置く。
今の場合、(1.6)は、

−
(
1− a

r

)
ṫ2 +

ṙ2

1− a
r

+ r2φ̇2 = −1 (1.29)

である。両辺に (
1− a

r

)をかけて、ε, hの定義を使うと、

−ε2 + ṙ2 +
(
1− a

r

)h2

r2
= −1 +

a

r
(1.30)

である。いま、

r′ :=
dr

dφ
=

ṙ

φ̇
=

r2

h
ṙ (1.31)

とすると、

ṙ =
h

r2
r′ (1.32)

なので、(1.30)より、 ( h

r2
r′
)2

+
(
1− a

r

)h2

r2
− a

r
+ 1− ε2 = 0 (1.33)

を得る。また、

u :=
1

r
, u′ :=

du

dφ
(1.34)

と置くと、

(u′)2 + (1− au)u2 − au

h2
+

1− ε2

h2
= 0 (1.35)

を得る。いま、
2E := ε2 − 1 (1.36)

とすると、

(u′)2 = au3 − u2 +
a

h2
u+

2E

h2
(1.37)

となる。
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2 厳密解
微分方程式

(u′)2 = R3(u) := a3u
3 + a2u

2 + a1u+ a0 (a3 > 0, ai ∈ R)　 (2.1)

が解ければ (1.37)は解ける。これを解こう。ただし、R3(u)は 3つの実根 u1, u2, u3を持ち、

u1 < u2 < u3 (2.2)

とし、uは u1から u2の間の値を取るとする。
Weierstrassの ℘関数は、微分方程式(d℘

dz

)2

= 4[℘(z)]3 − g2℘(z)− g3　 (2.3)

の解である。ただし、

℘(z) =
1

z2
+

g2
20

z2 +
g3
28

z4 +O(z6) (2.4)

である。また、

z =

∫ ∞

ζ

dx√
4x3 − g2x− g3

(2.5)

とすると、

ζ = ℘(z) (2.6)

である。
変数変換

u(φ) = A+Bv(z), z := cφ+ c′ (2.7)

を考え、 (dv
dz

)2

= 4v3 − g2v − g3　 (2.8)

の形になるようにA, B, cを選ぶ。まず、変数変換

u = w + d (2.9)

を考えると、

R3(u) = a3(w + d)3 + a2(w + d)2 + a1(w + d) + a0

= a3w
3 + (3a3d+ a2)w

2 + (a3d
2 + 2a2d+ a1)w + (a3d

3 + a2d
2 + a1d+ a0) (2.10)

なので、

d = − a2
3a3

(2.11)
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とすると、2次の係数が消え、

R3(u) = a3w
3 +

( a22
9a3

− 2a22
3a3

+ a1

)
w − a32

27a23
+

a32
9a23

− a1a2
3a3

+ a0

= a3w
3 +

(
− 5a22

9a3
+ a1

)
w +

2a32
27a23

− a1a2
3a3

+ a0 (2.12)

となる。次に、

w = Bv(z) (2.13)

とすると、
dv

dz
=

1

cB
w′ (2.14)

なので、 (dv
dz

)2

=
1

c2B2

[
a3w

3 +
(
− 5a22

9a3
+ a1

)
w +

2a32
27a23

− a1a2
3a3

+ a0

]
=

a3B

c2
v(z)2 +

1

c2B

(
− 5a22

9a3
+ a1

)
v(z) +

1

c2B2

[ 2a32
27a23

− a1a2
3a3

+ a0

]
= 4v2 − g2v − g3 (2.15)

となる。c = 1とすると、

B =
4

a3
(2.16)

であり、

v =
a3
4
u+

a2
12

(2.17)

である。
本節の以下では文献 [2]を参考にした。今、

4v2 − g2v − g3 = 4(v − e1)(v − e2)(v − e3), e1 > e2 > e3 (2.18)

とすると、

e1 =
a3
4
u3 +

a2
12

, (2.19)

e2 =
a3
4
u2 +

a2
12

, (2.20)

e3 =
a3
4
u1 +

a2
12

(2.21)

となる。φ = 0に u = u1であったとすると、

φ =

∫ ṽ

e3

dx√
4(x− e1)(x− e2)(x− e3)

, ṽ :=
a3
4
u+

a2
12

(2.22)
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である。ṽは、e3 ≤ ṽ ≤ e2の範囲で変化する。いま、
e2 − ṽ

ṽ − e3
=

v − e1
e1 − e3

(2.23)

で vを導入すると、

φ =

∫ ∞

v

dx√
4(x− e1)(x− e2)(x− e3)

(2.24)

となる。ここで、

e1 ≤ v ≤ ∞ (2.25)

である。よって、

v = ℘(φ) (2.26)

であり、

ṽ = e3 +
(e1 − e3)(e2 − e3)

℘(φ)− e3
(2.27)

を得る。公式

℘(φ)− e3 =
e1 − e3

sn2(γφ, k)
, (2.28)

γ :=
√
e1 − e3 =

1

2

√
a3(u3 − u1), (2.29)

k2 :=
e2 − e3
e1 − e3

=
u2 − u1

u3 − u1

(2.30)

より、

ṽ = e3 + (e2 − e3)sn
2(γφ, k) (2.31)

を得る。ここで snはヤコビの楕円関数である。これと、

ṽ =
a3
4
u+

a2
12

(2.32)

より、

u = u1 + (u2 − u1)sn
2(γφ, k) (2.33)

を得る [2]。この式の別の導出は付録Aで与える。

7



3 厳密解の解析
(1.37)に対しては、

R3(u) = au3 − u2 +
a

h2
u+

2E

h2
=: au3 +R2(u) (3.1)

である。u1, u2は、R2(u) = 0の解 ũ1, ũ2に近い。また、u2の係数から、

u1 + u2 + u3 =
1

a
(3.2)

である。まず、

ũ1 =
1

2

[ a

h2
−

√( a

h2

)2

+
8E

h2

]
=:

1− e

l
, (3.3)

ũ2 =
1

2

[ a

h2
+

√( a

h2

)2

+
8E

h2

]
=

1 + e

l
(3.4)

である。lはケプラーの楕円の半通径 (semi-latus rectum)であり、eは離心率である。軌道長半
径Aは、

A =
l

1− e2
(3.5)

である。また、

u3 =
1

a
− (u1 + u2)

≈ 1

a
− 2

l
(3.6)

である。なお、ui − ũi = O(a/l)である (i = 1, 2)(付録B)。
さて、

γ =
1

2

√
a(u3 − u1), (3.7)

k2 =
u2 − u1

u3 − u1

(3.8)

であった。まず、

a(u3 − u1) ≈ 1− a(3− e)

l
, (3.9)

γ ≈ 1

2

(
1− a(3− e)

2l

)
(3.10)

である。次に、

k2 ≈ 2ae

l
(3.11)

である。
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(2.33)より、近日点移動から次の近日点移動までの φの変化は、
2K(k)

γ
(3.12)

である。ここで、K(k)は第一種完全楕円積分で、

K(k) =
π

2

[
1 +

∞∑
n=1

((2n− 1)!!

(2n)!!

)2

(k2)n
]

=
π

2

(
1 +

k2

4
+O(k4)

)
(3.13)

なので、近日点移動の大きさは、1周期あたり

δ :=
2K(k)

γ
− 2π

≈ 2π
(
1 +

k2

4
+

a(3− e)

2l

)
− 2π

≈ 2π
(
1 +

ae

2l
+

a(3− e)

2l

)
− 2π

=
3πa

l
(3.14)

となる。よって、

δ ≈ 3πa

A(1− e2)
(3.15)

である。
水星の近日点移動の大きさを求める。『理科年表 2026』によると、

A = 0.3871 au, e = 0.2056, P = 0.24085 ユリウス年 (3.16)

である。P は公転周期で、ユリウス年 = 365.25 日 = 3.15576 × 107 sである。また、太陽質
量は 1.9884 ×1030 kgであり、1 au = 1.49597870700 × 1011 mである。万有引力定数は G =

6.6743× 10−11 m3kg−1s−2であり、光速度は c = 2.99792458× 108 m/sである。よって、

a = 2953 m, (3.17)

l = 5.546× 1010 m, (3.18)
a

l
= 5.325× 10−8, (3.19)

δ = 5.019× 10−7, (3.20)

δ

P
= 2.084× 10−6/ユリウス年
= 42.98 秒角/(100 ユリウス年) (3.21)

を得る。
惑星による近日点移動については、文献 [3]を参照のこと。
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A (2.33)の別の導出
(2.17)の vは、

v(φ) = ℘(φ+ z0) (z0 ∈ C) (A.1)

と書ける。よって、
u(φ) =

4

a3

[
℘(φ+ z0)−

a2
12

]
(A.2)

である。ω1, ω2を半基本周期とすると、

℘(z + ω2) = e3 +
(e3 − e1)(e3 − e2)

℘(z)− e3
(A.3)

である [2]。上式と (2.28)より、
℘(z + ω2) = e3 + (e2 − e3)sn

2(γz, k) (A.4)

なので、z0 = ω2として、
u = u1 + (u2 − u1)sn

2(γφ, k) (A.5)

を得る。

B u1, u2の補正
ニュートン法より、

ui ≈ ũi −
aũ3

i

R′
3(ũi)

(i = 1, 2) (B.1)

である。R′
2(ũ1) = ũ2 − ũ1なので、

u1 ≈ ũ1 −
aũ3

1

3aũ2
1 + ũ2 − ũ1

≈ ũ1 −
aũ3

1

ũ2 − ũ1

=
1− e

l
− a(1− e)3

2el2
(B.2)

である。同様に、R′
2(ũ2) = −(ũ2 − ũ1)を用いて、

u2 ≈
1 + e

l
+

a(1 + e)3

2el2
(B.3)

となる。

C (2.33)の変形・展開
sn(x, k)のフーリエ展開は、

sn(x, k) =
∞∑
n=1

An sin
[
(2n− 1)

π

2K(k)
x
]
, An =

2π

kK(k)

qn−
1
2

1− q2n−1
(C.1)

である。ここで、q := e−πK(k′)/K(k), k′ :=
√
1− k2であり、文献 [4]によると、
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q =
k2

16

(
1 +

k2

2
+

21

64
k4 +O(k6)

)
(C.2)

である (これは文献 [5]の方法で求められる)。よって、

A1 = 1 +
k2

16
+

7

256
k4 +O(k6), (C.3)

A2 =
k2

16
+

k4

32
+

41

2048
k6 +O(k8), (C.4)

A3 =
k4

256
+

k6

256
+

115

32768
k8 +O(k10) (C.5)

となる。これより、a/lのオーダーまでで、

u =
1− e cos(αφ)

l
+

a

l2

[3(2 + e2)

4
− 1 + 3e2

2e
cos(αφ)− e2

4
cos(2αφ)

]
, (C.6)

α :=
γπ

K(k)
≈ 1− 3a

2l
(C.7)

である。EMANの物理学 [6]は、ポアンカレの摂動法やPoincaré-Lighthill-Kuo法と呼ばれる方
法 [7, 8]を用いて、

u =
1− e cos(α′φ)

l
+

a

l2

[3(2 + e2)

4
− e2

4
cos(2α′φ)

]
+O((a/l)2), (C.8)

α′ := 1− 3a

2l
(C.9)

を得た1) 。明日の記事 [9]では、ポアンカレの摂動法を用いて、

u =
1− e cos τ

l
+

a

l2

[3(2 + e2)

4
− e2

4
cos 2τ + C sin τ +D cos τ

]
+O((a/l)2), (C.13)

τ = [1− εA+O((εA)2)]φ (C.14)

を導出する2)。C, Dは未定の定数である。
1)文献 [6]の

u = A+B cos(1− εA)φ+ ε
(
A2 +

1

2
B2 − B2

6
cos(2φ)

)
に

A =
1

l
, B = −e

l
, ε =

3a

2
(C.10)

を代入し、cos(2φ)を cos[2(1− εA)φ]に置き換える。(C.6)の

− a

l2
1 + 3e2

2e
cos(αφ) (C.11)

の項がないが、文献 [6]の u1 には斉次解 C sinφ+D cosφを加えてもよく、

u = A+B cos(1− εA)φ+ ε
(
A2 +

1

2
B2 − B2

6
cos(2φ) + C sinφ+D cosφ

)
(C.12)

も解である。(C.10)を代入し、C = 0とし、Dを上手く選べば (C.11)を取り込める。
2)より現代的には、くりこみ群の方法 [10]がある。
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